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Abstract

A modified chi-squared goodness-of-fit test was created for the gamma distribution in
the case where all three parameters are unknown ~nd must be estimated from the sample.
Critical values for this test are generated using a Monte Carlo simulation procedure with
5000 repetitions for each case. Random samples of size 5, 10, 15, 20, 25, 30, 40, and 50 are
drawn from gamma distributions with shape parameters 1.0, 1.5, 2.0, and 2.5, with the lo-
cation and scale parameters set to 10 and 1, respectively, in all zases. The three parameters
are then estimated from each sample, using an iterative technique combining the methods
of maximﬁm likelihnod and minimum distance, enabling computation of the chi-squared
statistics and critical velues. The same Monte Carlo process is used tc generate random
samples, parameter estimates, and chi-squared statistics from ten alternate distributions
as a check on the power of the chi-squared goodness-of-fit test. The goodness-of-fit tests
are executed by comparing the chi-squared statistics from alternate distributions with the
gamma critical values, allowing calculation of the power of the test against each alternate

distribution.
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A MODIFIED CHI-SQUARED GOODNESS-OF-FIT TEST
FOR THE THREE-PARAMETER GAMMA DISTRIBUTION
WITH UNKNOWN PARAMETERS

1. Introduction

1.1 Background

Two of the most important factors influencing the cost-effectiveness of a weapon
system are its reliability and maintainability (R&M). Together these factors determine the
availability of the system to perform its mission at any given point in time. The fastest,
most lethal weapon ever built will add little value to a combat force if it fails early and
often, or takes excessive time and resources to repair. When evaluating alternative design
proposa.ls, therefore, engineers and program managers must incorporate R&M considera-
tions as key factors to be weighed and traded-off with performance, cost, schedule, and
other parameters.

A critical measuring stick of reliability is the mean t'me to failure (MTTF), which
as the name suggests indicates the expected duration of a component’s or systerh’s opera-
tion before corrective maintenance becomes necessary. The MTTF can be determined by
indirect testing, simvlating operational use by subjecting the item in a matter of heurs
to the stresses and sirains that it would typically encounter in weeks or months, thereby
accelerating the aging process. After obtaining a few data points on time-to-failure in
this way, the engineer would like to be able to make predictions on the MTTF and the

probabilities associated with a 1ange of possible failure times surrounding this mean.

Fortunately, the MTTF of most items can be adequately modeled by cne of the
classical probability distributions of continuous random variables, such as the gamma dis-

tribution. The engineer can thus examine the test data and determine which of these

distributions best represents the true MTTF behavior of the item under investigation.




The statistical tool for deciding whether a given set of data (sample) could reascnably
have come from a given probability distribution is called a goodness-of-fit test. As the name
implies, this test indicates whether there is a good fit between the data in the sample and
sorre hypnthesized distribution. If the test shows a fit that is less than good, the engineer
can then proceed to a different distribution and continue testing in this manner until an
appropriate one is found. He may change the hypothesis to an entirely different family
of distributions (the Weibull or normal rather than the gamma, fcr instance), or simply
change one or more of the constants, called parameters, whick uniquely determine the

mathematical form of the distribution.

The purpcse of every goodness-of-fit test is to determine how close is the match
between an observed sample and some (hypothesized) probability distribution, with which
it is desired to model the behavior of the phenomenun represented by the sampie. This is
accomplished by computing a statistic which quantifies the differences between the sanple
and the hypothesized theoretical distribution. If this statictic is relatively small in value,
then so are the differences, and the hypothesis is accepted. Conversely, large values of the
goodness-of-fit statistic call for rejection of the hypothesis. The watershed level to which

the statistic is compared to determine acceptaice or rejection is called the critical value.

Several goodness-of-fit tests are available, differing mainly in power, the probability
that a poor fit will in fact be detected, and the type of sample data and hypothesized
distributions to which they can be applied. In general, a test with high power will not be
applicable to a wide variety of sample and distribvtion types, and vice-versa. An example
of the latter situation is the chi-squared goodness-of-fit test, versatile in its application but
somewhat lacking in power.

Over thea years, the various types of goodness-of-fit tests have been tailored for use
with specific families of hypothesized probability distributions. The chi-square test has not
been tailored for use with the gamma distribution, however, in the case where all three

parameters must be estimated from the sample.




1.2 Objective

The proposed research will generate a chi-squared gcodness-of-fit test for the gamma
distribution, in which all three parameters are estimated from the sample. The shape
and scale parameters will be estimated by the method of maximum likelihocd, whiie the

location parameter is estimated by the minimum distance method.

1.3 Sub-objectives

1) Generate sets of random numbers from the gamma distribution.

2) Calculate the the maximum likelihood (ML) estimates for the location, scale, and
shape parameters.

3) Calculate the minimum distance (MD) estimate of the locati$n parameter.

4) Re-calculate the ML estimates for the shape and scale paraméters.

5) Compute the chi-squared goodness-of-fit statistics.

6) Order these statistics in an array and find the critical values.:

7) Generate sets of random numbers from distributions cther than the gamma.
i

8) Repeat steps 2-5 for these random number sets.

9) Determine the power of the test by computing the percentagej of rejections of the

!
null hypothesis, that is, the fraction of the number sets in which the chi-squared statistic

t

exceads the critical vaiues determined in step 6. |
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2.1 Goodness-of-Fit Tests

The general procedure for a goodness-of-fit test is as follows. First, a hypothesis is
made to identify a theoretical distribution, as suggested by a rough examination of the data
in the sample. If the parameters of this distribution are unknown, as is usually the case,
then they must be estimated from the data. Following this, the cumulative distribution
function (CDF) can be completely written for the hypothesized distribution, using the
estimated parameters. The goodness-of-fit statistic is then calculated, using some type of
formula to compare the “behavior” of the sample data to what one would expect to sece
if it were actually from the distribution in question, using the CDF. The value obtained
is compared to the tabled critical value to determine whether to accept or reject the null
hypothesis that the sample is from the specified distribution. This procedure is essentially
~ the same for all goodness-of-fit tests. The main difference among tests lies in the method

of calculation of the goodness-of-fit statistic. (1:2-4)

The chi-squared test, developed ny Karl Pearson irn 1900, is still among the most
widely-used goodness-of-fit tests because of its broad applicability. The test can be used
with grouped or ungrouped data, discrete, continuous, or mixed distributions, and with the
parameters estimated or known beforehand. It can also be modified for use with censored
data or truncated distributions. The test is an approximate test since the sample statistic
is not truly distributed as a chi-square\‘}random variable, only in the upper and lower tails
of the distribution. (15:113) i\

Three drawbacks of the chi-squan\:d test should be mentioned. First is its relatively
low power. Further, its results are not necessarily unique for a given set of data, because
the data must be arranged in groups bef&re the test can be carried out. Since the selection
of groups is somewhat arbitrary with no’standard procedure, the results may differ from
one analyst to the next. Finally, if using percentage points of the chi-squared distribution

as the critical values for the test, one should have samples of at least 25 data points.

(15:113-14)




The chi-squared test procedure is as follows. First, the data are divided into k groups.

The number of data points that are ezpected to fall in each group is then calculated and

denoted E;,i = 1,2,---k. The actual or observed number in each group is tallied and

called O;. The formula for the test statistic is

k S \2
a2 (Oi"bl’)
2= g

i=1

with the null and alternative hypotheses represented as’

Ho: - F(z) = Fy(z)

Hy: F(z) # Fo(z)

Normally, we reject Hy if X2 > x?(k—p—1), where x?(k— p~1) refers to the critical
value of the chi-square distribution with k — p— 1 degrees of freedom, p being the number
of parameters estimated in the specification of the null hypothesis Fy(z). For this to be
strictly correct, however, the parameters must have been estimated by the minimum chi-
square method. If other methods are used, then the number of degrees of freedom of the
chi-squared critical value cannot be stated with certainty, except to say it lies somewhere
between k — 1 and k — p — 1. With k large and p small (as is often the case) the value of
the chi-squared critical value will not change much in this range, so the uncertainty is of
little concern. (10:68)

Estimating the parameters of the hypothesized distribution from the sample inher-
ently biases the test toward acceptance of the fit as good, since it obviously increases the
agreement between the sample and the distribution. It is for this reason that the number

of degrees of freedom of the chi-squared critical value must be reduced in this case, as fewer

degrees of freedom reduces the critical value and thus makes it more difficult to “pass” the
test. (7:242)




The art of grouping data for the chi-squared test has been a subject of much study

and debate among statisticians in this century. One of the first guidelines offered was that
the expected cell frequencies E; should in general be at least five, that is, there should be at
least five data points in each group. This rule, proposcd by Fisher in 1925, enabied use of
the chi-squared critical values as a reasonable approximation for small sample sizes (12:23).
In 1942 Mann and Wald elaborated on Fisher’s rule. They argued for equiprobable cells,
meaning that the data are grouped such that the probability (under the null hypothesis)
of a data point falling in any cell is the same for that of any other cell, or that all of
the E; are equal. They proved that such an assignment was unbiased and resulted in a
closer approximation to the chi-squared statistic by the chi-squared distribution (10:69).
To specify the actual number of (equiprobable) cells, Mann and Wald derived the following
formula: g3 (8 ‘
M=4 (Z(Z—);)

where M is the number of cells and ¢(a) is the 100a% point of the standard normal
distribution, a being the significance level of the test. Rayner and Best found that varying
the number of ceils for certain fixed-level tests resulted in a rise in power until reaching a
maximum (of.en for k values of 4 or 5), which is followed by a decrease for higher k values
15:24). D.S. Moore later observed that decreasing the number of cells, even to the point
of halving the Mann and Wald number, does not appreciably affect the power. Moore

recommended the much simpler formula (10:70)

M = 2n%/"

Lancaster(1980) and Kallenberg(1985) have recently challenged the use of equiprob-
able cells, asserting that higher power is obtained when cell boundaries are drawn only
at points of steep slope of the alternative probability density function. The fact that the
alternative usually cannot be specified exactly limits the usefulness of this finding. (12:25)
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Despite the diversity of opinion, there is general agreement on the following rulee,

first suggested by Roscoe and Byars in 1971:

1. With equiprobable cells, the expected cell frequency should be at least one for & = .05
. and at least two for a = .01. |

2. If the cells are not equiprobable, the above cell counts should be doubled.

3. If there are only two cells, the test based on the exact binomial distribution should

be used in lieu of the chi-squared test. (12:23-4)

In more recent times two new goodness-of-fit statistics have been developed based
on the chi-squared distribution, the Watson-Roy and Rao-Robson statistics. Although
more powerful than the classic Pearson statistic uséd in this thesis, these new chi-squared
statistics are also more limited in their application. (16:91)

Even more powerful than these new chi-squared statistics are the other major class of
goodness-of-fit statistics, known a8 EDF statistics due to their basis in the empirical distri-
bution function (EDF) of the sample. The EDF for n ordered data points Z(1), Z(2),* * * T(n),

is defined as:

0, z < (1) ‘
EDF(J:) = -'E, Z() z< Z(i4+1) i=1,.. -,(n - 1)
1, z 2 Z(n)

All EDF statistics involve some type of measurement of the “distance” between the
sample’s distribution function, the EDF, and the theoretical cumulative distribution func-
tion of the hypothesized distribution. The three most popular EDF statistics, in order
of increasing complexity, are the Kolmogorov-Smirnov, Cramer-von Mises, and Anderson-
Darling statistics. These statistics cannot be used in the case of three-parameter distribu-

tions where all parameters are to be estimated. ( 13:4-6).

The relative lack of power of the chi-squared test owes much to the need for grouping

of data, since this grouping automatically masks some of the information resident in the




sample. Nevertheless, there remain many uses for the test, owirg to its ﬂexibility and

better handling of the cases where parameters must be estimated. The test is especially
useful in the early stages of screening and assessing data, often as a precursor to more

powerful and specific tests. (10:91-2)

2.2 Parameter Estimation

In most cases where a goodness-of-fit test is to be employed, we are not in a posi-
tion to know the parameters of the hypothesized distribution, only the family. Since the
distribution must be fully specified in order to conduct the test, there is no choice but to
estimate the parameters from the sample. As with goodness-of-fit tests, there are several
methods of accomplishing parameter estimation. By far the most useful is the method of

maximum likelihood, but the minin.um distance method will also be used in this effort.

The method of maximum likelihood, pioneered by R.A. Fisher in the 1920, is the
most widely-used technique for estimating the parameters of a probability distribution and
generally produces the best estimators. The estimates produced by this method are those
which maximize the likelihood of the observed sample having come from the distribution
defined by the estimated parameters. The likelihood function, which is the joint density
function in the case of continuous random variables, is first written for the hypothesized
distribution. The natural logarithm of both sides of the equation is then customarily taken,
to aid in computing the derivatives in the next step. The partial derivative of the likelihood
function is then taken with respect to each parameter being estimated, and this expression
is set equal to zero. The resulting equations are then solved simultaneously to yield the

maximum Ivelihood estimates. (8:255)

The minimum distance method, introduced by Woifowitz in 1957, works by mathe-
matically minimizing the distance between the hypothesized CDF and the sample EDF.
An EDF goodness-of-fit statistic (often one of the three discussed in the previous sec-
tion) expresses the distance between the CDF and the EDF, and the pa-xra.meter estimates

defining the CDF are modified until this distance is minimized. (14:75)
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As demonstrated by Wolfowitz, the minimum distance method often provides mnore

concistent estimators than the method of maximum likelihood. Consistent estimators are
those which converge to the true parameter value with probability one as sample size
increuses without bound. Another desirable property of estimaiors is robustness, which
signifies a versatility enabling their use with a wide range of underlying models. The price
paid for this versatility is often somewhat diminished performance (in terms of the other
desirable estimator properties) for any one model. Woodward and others showed minimum

distance estimators to be more robust than maximum likelihood estimators in a study of
the mixture of two normal components. (1:2-3)

Parr and Schucany undertook perhaps the most comprehensive evaluatidn of the
minimum distance technique in 1980. They concluded that the method generated “strongly
consistent estimators with excellent robustness properties” when a.pplied to the location
parameter of symmetric distributions, and found these estimators to be both invariant and
relatively simple to calculate. (12:5) |

Harter and Moore in 1965 applied the method of maximum likelihood to the gamma
and Weibull distributions, for the first time allowing all three parameters to be simul-
taneously estimated by use of an iterative, computer-driven technique. Their approach

can be used with complete or censored (partial) data, and with two, one, or none of the

- parameters previouély krown. (4:639)

In 1984 Hobbs, Moore, and James introduced a parameter estimation technique for
the gamma and Weibull distributions which improved on the Harter and Moore effort. All
three parameters are initially estimated by maximum likelihood. The location parameter
is then re-calculated using the minimum distance method. Finally, this improved location
estimate is re-inserted into the maximum likelihood equations, and the scale and shape

parameters re-estimated. The final parameter estimates are better than those obtained

using maximum likelihood alone. (5:237)




2.8 The Gamma Distribution

Several interesting random phenomena can be adequately modeled using the gamma-
type probability distribution. The central feztures of this distribution are that it takes on
only positive values and is skewed to the right, meaning that smaller values are the most
likely to occur, with the probability of seeing larger values decreasing in a slow and smooth

fashion as the values increase. (8:164)

Many applications of the gamma distribution are found in R&M theory, as previously
noted. It has been discovered, for instance, that the length of time to perform a mainte-
nance check on an aircraft engine is a gamma random variable, as is the length of time
between failures of that engine (8:164). The physical sciences use the gamma distribution
as well, in such areas as modeling the mean value of radioactive particles in shale (13:11).
Finally, queuing theory depends heavily on a special case of the gamma distribution, the
exponential distribution, to represent the arrival and service times of customers or other

entities at any of a number of service operations.

The form of the gamma probability density function (pdf) is as follows:

_ -t
= E ;Z;(l:)

where z is the gamma random variable, k is the shape parameter, 8 is the scale
parameter and c is the location parameter. The expression I'(k) denotes the gamma

function, defined as
«©
I(k)= /z""‘e"dr
(]
This is the three-parameter representation; frequently the gamma density function is

expressed without the location parameter. This common representation, with the location

10




parameter set to zero, is known as the two-parameter gamma distribution. When 6 = 1

and c¢=0, we have what is called the standard gamma distribution.

Figures 1 and 2 show the effect of varying the shape parameter on the graph of the
gamma pdf. The graph with shape parameter £ = 1 can be recognized as the familiar
exponential distribution. Figure 3 conveys the role of the scale parameter by showing

graphs with constant shape and location parameter and various values of 8.

2.4 Related Work

Viviano developed a goodness-of-fit test for the three-parameter gamma distribu-
tion in 1982, using the Anderson-Darling, Cramer-von Mises, and Kolmdgorov-Smirnov
statistics. The shape parameter was assumed known in this effort, while the scale ard
location parameters were estimated by maximum likelihood (13:xi). In 1991 Crown used
the Hobbs/Moore/James parameter estimation technique to create an Anderson-Darling
goodness-of-fit test for the Weibull distribution. He assumed the shape parameter known

and estimated the location (minimum distance) and scale (maximum likelihood) parame-

ters (1:viii).

11
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. M ethodology

8.1 Generation of Random Number Sets

For each set of critical values desired, 5000 sets of gamma random numters had
to be generated to simulate actual sample data that might be obtained, say, through
reliability testing. The large number of repetitions is necessary to obtain a reasonably
accurate indication of the true behavior of the system and achieve a high level of statistical
confidence in the results; this is known as the Monte Carlo simulation procedure. The larger
the number of repetitions, the better the results would represent the true behavior of the
gamma population, but limitations in time and computer resources mandated the choice
of 5000.

The gamma random numbers (called gamma deviates) are drawn using a computer-
ized random number generator, in this case the Fortran IMSL subroutine called RNGAM.
This subzoutine will produce pseudo-random number sets from the standard gamma dis-
tribution (scale=1 and location=0). The user need only supply the shape parameter and
sample size desired. Since for the purposes of this investigation we want to study the
three-parameter gamma distribution, the 2-parameter, standard deviates are transformed

ucing the following equation:
Z=0z+4c¢c

Where z is the standard gamma deviate, § and ¢ are the scale and location parameters
desired, and Z is the 3-parameter, non-standard deviate. For this investigation we set the

location parameter to i0 and the scale parameter to 1 for all gamma random number

draws.

3.2 Parameter Estimation

The method of Hobbs, Moore, and James was used to iteratively compute estimates
of the shape, scale, and location parameters for each random sample. The method first

iteratively solves the three maximum likelihood (ML) equations simultaneously. These

15




equat.ons are formed by taking the partial derivatives of the gamma likelihood function

L = (.Ivlc;a)n i(z—ié:—s)bl el- 20 =]

=1

with respéct to each of the three parameters in turn and setting each equal to zero:

Sinl  -nk n gi—c
W - ¢ tXe@ = °
Sinl n oT(K) 1
ol -nind + &In(z;—-c)—n TRV 0
SinL = -1 n
5 = (1-F) Y(zi-ot o+ 7 = O

i=1

After the algorithm converges to the ML estimators for the three parameters, the
minimum distance (MD) method is used to further refine these estimates. First, the MD
estimate of the location parameter is obtained from the sample data. The Kolmogorov-
Smirnov, Cramer-von Mises, and Anderson-Darling distances are all minimized, but the
location parameter estimate using the minimum Anderson-Darling distance has been found

to be the best estimate and is the one used here. The computational form of the Anderson-

Darling statistic is:

A2 = -n- .}‘.i:(zj - 1)[InF(z;) + In(1 --.F.,_,'-n)]
j=t

After the MD estimate of the location parameter is found, the ML algorithm is used
to re-compute the shape and scale estimators, using the new value of the location parameter
to begin iterations. Estimates of the shape, scale, and location parameters found in this

way are superior to those found initially by the ML method.

16




3.3 Calculation of the Chi-Sguared Goodness-of-Fit Statistic

Once the parameter estimates are obtained for each random sample, the garhma. cu-
mulative distribution function (cdf) can be fully spccified, enabling computation of the
chi-squared goodness-of-fit statistic for that sample. This is accomplished using the IMSL
subroutine CHIGF. For simplicity we have chosen to make the chi-squared cells equiprob-
able with expected cell frequency equal to one, which is within the guidelines offered in
the literature. The IMSL function GAMDF generates the numerical value of the standard
gamma cdf when supplied with a gamma deviate and the shape parameter. Convérsion of
the 3-para,méter, non-standard deviates back to the standard deviates is thus required in
order to invoke this function. This does not affect the value of the goodness-of-ﬁt statistic,
however, due to the invariance property of the scale and location parameter estimates and

the invariance of the chi-squared statistic to location and ecale changes.

3.4 Identification of Critical Values

The 5000 values of the chi-squared goodness-of-fit statistic are placed in numerical
order (least to greatest) and the critical values are obtained from this array simply by
picking out the appropriate ordered entry. For example, the 80th percentile critical value

is the 4000th entry of the ordered array.

3.5 Power Study

For the power study, the steps of random deviate generation, parameter estimation
and calculation of the chi-squared goodness-of-fit statistics are executed in identical fashion,
with the exception that different IMSL routines are used to generate the random deviates,

since it is desired to draw from alternative distributions.

The final step in the power study is determining the rejection number, which indicates
the power of the test to detect the fact that the sample data did not come from the
hypothesized gamma distribution. This is done by conducting an actual test. The test

statistic obtained from the alternative distribution is compared to the appropriate (in

17
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terms of sample size and shape parameter) critical value generated in the first part of
the thesis. If this chi-aquared goodness-of-fit statistic exceeds the critical value, the null
hypothesis is rejected and the lack of fit between the alternative distribution sample and
the hypothesized gamma distribution has been successfully detected. If the test statistic is
less than or equal to the corresponding critical value, the lack of fit has not been detected
by this test. The fraction of the 5000 trials in which the lack of fit is in fact detected is

the power of the test for that alternative distribution.
Steps involved in the geueration of critical values and the power study are depicted

in flow chart form in Figures 4 and 5.
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Repeat 5000 times

Genenate N Random Deviates
from Gamma (K, 1, 10)

Calculate MLEs for Shape, Scale, Location

Calculate MDE for Location

Recalculate MLEs for Shape, Scale

Calculate Chi-Squared GOF Statistic
J

Order GOF Statistics in an Amay

:

Find the Critical Values

Figure 4. Generation of Critical Values
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IV. Results

4.1 Critical Values

Critical values for the chi-squared goodness-of-fit test for the three-parameter gamma
distribution, with all parameters estimated, are shown in Tables 1-4. The critical values

were obtained for sample sizes 5,10,15,20,25,30,40 and 50 and shape parameters 1, 1.5, 2
and 2.5. ‘ ‘

The first observation to note is that the critical values increase with sample size.
This result is to be expected, since the use of equiprobable cells with expected frequency
one means that the number of cells equals the sample size. Thus with inérea.sing sample
size we increase the number of cells, generating more terms to be summed to arrive at the
chi-squared statistic. This observation also agrees with the classical rule that the statistic
approximates the .chi-squared distribution, with degrezs of freedom increasing with the
number of cells. |

According to theory, the critical values obtained should have fallen between x?(k —1)
and x?(k — p—1). As shown in Table 5, the mean critical value (over all shapes) does in
fact fall in this window in all nine cases checked for the smaller sample sizes (5, 10, 15),
but in six of the nine cases it lies closer to the higher end, x?(k - 1).. This does not agree
with the expectation that, because distance estimation was used on one parameter, the
critical value would lie closer to x*(k — p—1) (9). The departure from theory is even more
pronounced, however, in the case of the larger three sample sizes (20, 25, 30, 40, and 50).
Here the critical values fall outside the window (at the high end) without exception, the

amount outside the window increasing with sample size.

It is apparent from these observations that whatever is driving the critical values
higher is a function of sample size, being markedly more noticeable with the larger samples.
Since the sample size equals the number of cells, one might speculate that the number of
cells is actually the driving factor. This in turn leads to the speculation that the small ceil

counts (expected value one) are the underlying cause, since this choice seems to test the

limits of the cell-selection guidelines,




The case of sample size 5 merits further discussion. An anomolous result is seen

here in that the critical values tend to be identical for the various significance levels. This
phenomenon is a product of the small sample size and the low expected cell frequency of
one; the two factors combine to generate a very small number of possible values of the

chi-squared statistic. For this reason it is recommended that this test not be employed
with sample sizes less than 10.
There is no significant difference in critical values attributable to varying the shape

parameter in the range (1.0—2.5).

Table 1. Critical Values for Shape=1.0

_ Level of Significance

n| 20 | .15 | .20 | .05 | .01
5 | 4.000 | 6.000 | 6.000 | 6.000 | 6.000
10 | 10.000 | 12.000 | 12.001 ] 14.000 | 20.000
15 | 17.999 | 18.000 | 20.000 | 22.000 | 28.000
20 | 24.000 | 26.000 | 27.998 | 30.000 | 36.000
25 | 31.999 | 33.999 | 35.999 | 38.001 | 46.000
30 | 38.000 | 40.000 | 42.000 | 45.998 | 52.001
40 | 51.998 | 53.997 | 55.999 | 59.999 | 68.004
50 | 64.003 | 66.010 | 69.999 | 74.001 | 86.002

Table 2. Critical Values for Shape=1.5

Level of Significance
20 [ 15 | a0 [ .05 | .01
4.000 | 6.000 | 6.000 | 6.000 | 6.000
12.000 | 12.000 | 14.000 | 14.001 | 18.001
18.000 | 20.000 | 20.000 | 24.000 | 28.001
20 | 24.001 | 26.000 | 28.000 | 30.000 | 36.000
25 | 31.999 | 33.999 | 35.999 | 38.001 | 46.000
30 | 38.000 | 40.000 | 42.000 | 45.998 | 53.998
40 | 51.999 | 53.999 | 56.000 | 60.001 | 68.003
50 | 64.004 | 66.012 | 70.000 | 74.001 | 83.998

|l
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Table 3. Critical Values for Shape=2.0

Level of Significance
n| 20 [ .15 | .10 | .05 | .01
5 | 4.000 | 6.600 | 6.000 | 6.000 | 8.000
10 | 12.000 | 12.000 | 14.000 | 14.001 | 19.999
15 | 18.000 |} 20.000 | 20.000 | 22.001 | 28.000
20 | 24.001 | 26.000 | 28.000 | 30.000 | 38.000
25 | 31.999 | 32.001 | 34.001 | 38.000 | 45.998
- 30 | 38.000 | 40.000 | 42.000 | 46.000 | 54.000
-l \// 40 | 51.996 | 53.994 | 56.000 | 60.001 | 68.002
o 50 | 64.001 | 66.004 | 69.998 | 74.003 | 83.999

Table 4. Cfitica.l Values for Shape=2.5

Level of Significance

n| .20 [ .15 20 | .05 | .01
5 | 4.000 | 6.000 | 6.000 | 6.000 | 8.000
10 | 12.000 | 12.002 ; 14.000 | 16.000 | 20.000
15 | 18.000 |{ 20.000 | 22.000 | 24.000 | 30.000
20 | 26.000 | 26.001 { 28.000 | 32.000 | 38.000
25 | 32.001 | 34.000 | 36.000 | 39.999 }{ 46.000
30 | 40.000 | 41.998 | 43.999 | 47.998 | 56.000
40 ] 52.002 | 54.004 | 58.000 | 62.000 | 71.993
50 | 66.000 | 68.001 | 71.996 | 76.001 ] 86.003
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4.2 Power Study

Tables 6-9 show the results of the power study for ten alternative distributions, with
two null hypotheses (gamma shape 1.5 and gamma shape 2.5) and two significance levels
(.01 and .05) each.

The results of the power study fall into three groups. First is that for the gamma as
the alternate distribution, which was merely a check on the critical value results obtained

earlier. In the two cases where the null hypothesis was true, the power or percentage

.of rejections of the null hypothesis is very close to the significance level of the tests, as

expected. In the cases where the null hypothesis was true except for the value of the shape
parameter, the power values are still quite close to ine significance levels, confirming our

suspicion that the critical values are insensitive to the shape parameter values in this range.

The second group of results is that for the Weibul! 2~d Leta as the alternate distribu-
tions. Here we see very low rejection percentages across both the columns and rows of the
table. This consistently low power value indicates that the test cannot distinguish between
samples from the Weibull and beta distributions and gamma samples; this is tantamount
to saying that the gamma distribution can adequately model cases where the underlying

population is actually Weibull or beta, or that the gamma distribution is robust.

The third group of power study results is that for the normal, lognormal, and uniform
alternate distributions. In these cases the power is quite low for small sample sizes but
improves appreciably as sample size increases. This is equivalent to the statement that
the gamma dist?ibution does not adequately model cases where the under]yihg population
is actually normal, lognormal, or uniform, and it is imperative that a goodness-of-fit test
leads to a rejection of the null hypothesis in these situations. The chi-équaréd test will lead
to a rejection in a fair percentage of cases, especially with the larger sample sizes and the
lognormal distribution. When the chi-squared test fails to reject, of course, more powerful

tests (when available) should always be used for confirmation.

In the case of the normal, lognormal, and uniform distributions, the power shows
consistent increases with increasing sample size, agreeing with the conventional wisdom

that the chi-squared test works best for larger sample sizes. Common sense suggests that
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Table 5. Comparisor of Mean Critical Values to x? Distribution

Sv {0 A G R R S RS

a || n=5 fI X¥*(1) | ¥*(2) | X¥*(3) | X¥*(4) ||
10 || 6.000 [ 2.706 | 4.605 | 6.251 | 7.779
.05 1t 6.000 {| 3.841 | 5991 | 7.815 | 9.488
01l 7.000 (| 6.635 | 9.210 | 11.345 | 13.277
a_ [ n=10 [[ x*(6) [ X*(7) | x*(8) | X*(9) ]
.10 || 13.500 [[| 10.645 | 12.017 | 13.362 | 14.684
.05 {| 14.500 [{| 12.592 | 14.067 | 15.507 | 16.919
.01 | 19.500 || 16.812 | 18.475 | 20.090 | 21.666
a_ [ n=15 [[x*(11) [ x*(12) [ X2(13) [ X*(19)
.10 [| 21.500 ||| 17.275 [ 18.549 | 19.812 | 21.064
.05 '23.000 19.675 | 21.026 | 22.362 | 23.685
.01 || 28.500 [|| 24.725 | 26.217 | 27.688 | 29.141
a || n=20 * * * [ x*(19)
.10 || 28.000 * * * 27.204
.05 || 30.500 * * * | 30144
.01 || 37.000 * * + | 36.191
o =25 m * * * x*(24)
.10 || 35.500 * * *  ]33.196
.05 || 38.500 * * * | 36.415
L .01 || 46.000 * * * 142980
a [[n=30 ] * ¥ ¥ TXx(29) ]
.10 || 42.500 ¥ * * | 39,088
.05 || 46.500 * . * | 42577
.01 || 54.000 ’ * * * | 49.588
a || n=40 * * * x*(40) ||
.10 || 56.500 ¥ * * | 51.805
.05 || 60.500 * * * | 55759
| .01 |f 69.000 * * *+ | 63.691
[_'L" n=50 * - * xim
.10 || 70.500 * * * 63.167
74.500 * * * |67.505
.01 || 85.000 * * * 76.154
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any statistical procedure will be more accurate with larger sample sizes, but this result

appears even more pronounced with the chi-squared test. Part of the reason for this may

be that since the critical valuves are greater with larger samples, there is more of a range of

possible values and a reduced likelihood of the statistic being exactly equal to the critical

value (a case where the null hypothesis is not rejected).

Table 6. Power Study for H, : Gamma, a = .05, Using Critical Values For Shape=1.5

Alternate Distribution

Weibull

26
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Gamma Gamma Weibull Weibull Weibull
u n (1.5,1,10) (2.5,1,10) (1.5,1,0) (2.5,1,0) (1.5,1,10) (2.5,1,10)
10 .048 .054 .049 061 064 .060
20 .054 .069 .060 .058 075 . .085
30 .049 072 060 .064 .064 .089
40 .049 .066 .055 067 .052 *
50 .050 .065 070 082 055 *
Normal Lognormal Uniform Beta
n " (10,1) (0,1) (10,15) (1,2)
10 088 .205 .087 044
20 .160 .360 141 062
30 234 485 .188 .069
40 275 571 209 .092
50 .346 662 265 123




Table 7. Power Study for Hy : Gamma,

a = .01, Using Critical Values For Shape=1.5

Alternate Distribution

Gamma Gamma Weibull Weibull Weibull Weibull
n (1.5,1,10) (2.5,1,10) (1.5,1,0) (2.5,1,0) (1.5,1,10) (2.5,1,10)
10 010 014 014 015 017 014
20 .011 018 016 017 018 .020
30 .010 .015 .016 015 014 019
40 010 014 019 019 013 *
50 010 .016 021 023 014 *
Normal Lognormal Uniform Beta
[I n " (10,1) (0,1) (10,15) (1,2) ”
10 037 097 030 011
20 .058 .189 .048 014
30 097 270 .066 019
40 134 .363 .083 .026
50 .185 450 113 043

Table 8. Power Study for H, : Gamma, « = .05, Using Critical Values For Shape=2.5

Alternate Distribution

|
Gamma Gamma Weibull Weibull Weibull Weibull
n (1.5,1,10) (2.5,1,10) (1.5,1,9) (2.5,1,0) (1.5,1,10) (2.5,1,10) "
10 028 034 029 .038 037 .038
20 .032 .040 038 038 .045 055
30 .035 049 043 047 044 061
40 .036 049 .045 .054 040 *
50 .039 .050 .054 064 .040 *
“ Normal Lognormal Uniform Beta
n | (10,1) (0,1) (10,15) (l,gl "
10 .065 .154 058 025
20 115 292 096 040
30 .186 422 .149 051
40 .242 523 .180 071
50 307 619 225 097
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Table 9. Power Study for H, : Gamma,

a = .01, Using Critical Values For Shape=2.5

| Alternate Distribution
Gamma Gamma Weibull Weibull Weibull Weibull
n l (15,1,10) | (2.5,1,10) | (1.5,1,0) (251,0) | (151,000 | (2.5,1,10)
10 004 . - .006 010 .007 011 007
20 .006 011 010 010 010 013
30 .005 010 .009 011 .008 ..010
40 .007 010 015 012 010 *
50 006 010 014 016 .009 >
Normal Lognormal Uriform Beta

n (10,1) (0,1) (10,15) (1,2)

10 025 070 021 007

20 040 151 031 .008

30 067 220 046 .012

40 113 305 061 017

50 144 393 .083 030
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5.1

5.2

V. Conclusions and Recommendations

Conclusions

The results of this investigation can be summarized as follows:

. Critical values for a chi-squared goodness-of-fit test for the three-parameter gamma

distribution (all parameters estimated) were generated by a Monte-Carlo simulation

procedure and tabulated. Sample sizes should be at least 10 to use these values.

. The gamma distribution can adequately model samples that are actually from a

Weibull or beta distribution.

. Increasingly as the sample size inéreases, the critical( values deviate from the ex-

pectation that their distribution will be approxima.tea by the classical chi-squared
|

distribution with degress of freedom be<tween k— p — i and k - 1.

. The use of a small expected cell frequency (equal to one) may have contributed to

conclusion 3 and may have lessened the power of the tests.

Varying the shape parameter of the gamma distribution in the range (1.0—2.5)

caused no significant differences in the critical values obtained.

. Larger sample sizes resulted in appreciably more powerful tzsts in the cases where

|
rejection of the null hypothesis was in order. f
|

Recommendations

The followirg steps; are suggested to further this research:

. Investigate the ~fect of changing the cell-assignment rule for computing the chi-

squared statistic. One or more of the formulas in Chapter 2 for determining the
number of cells should be used, along with simply increasing the expected cell fre-
quencies to values such as 1.5 and 2.

Modify the parameter-estimation routines to improve the speed and consistency of

convergence.
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405

Appendiz A. FORTRAN Code to Generate Chi-Squared Statistics

PROGRAM CHI-SQUARED
ESTIMATES THE THREE PARAMETERS OF THE GAMMA DISTRIBUTION USING
MAXIMUM LIKELIHNOOD AND MINIMUM DISTANCE METHODS
THEN CALCULATES CHI-SQUARED STATISTICS
COMMON/VALUE/P(100)

COMMCH/RAY/T(100)

COMMON/MIN/IN

COMMON/MIN1/XNCDF(50) ,DIFKS,I,IKS,IKS1
COMMON/MIX2/DIFCVM,ICVM,ICV1
COMMON/MIN3/DIFAD,IAD,IAD1
COMMON/MANA/N,5S1,852,8S3,M,C1,T1,A1, HR
COMMUN/SHAPE/ASJ

DOUBLE PRECISION DSEED,T,C1,T1,A1,CSJ,ASJ,TSJ
DOUBLE PRECISION CKS,CCVM,CAD

DIMENSION FX(60),AA(5000),XX(5002),YY(5002)
INTEGER REP,PP

DSEED=1500.000

MR=0

NONE=0

NZERO=0

REP=102

NOS=REP-2

NUM=REP-2

YY(1)=0.

YY(REP) =1,

DO 405 L=2,REP-1
YY(L)=((L-1)-.5)/N0S

CONTINUE

CALL RNSET(DSEED)

DO 100 PP=4l,40,40
PRINT#,"PP" PP

N=PP

M=N

IN=N

DO 99 KK=1,5000
S§51=1

S52=1
SS3=1
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888

aO~NOaO0

(2]

(2]

KKK=KKK+1

Ci=10

Al=q

Ti=1

CALL RNGAM(N, \{,P)

DO 719 IK=1,N
P(IX)=T1+P(IK)+C1

IF (KK.LT.100) THEN
PRINTs+,"P" KK,P(IK)
ENDI?
CONTINVE

CALL VSRTA(P,N)
CALL SVRGN(N,P,P)
DO 3 II=1,N

T(II)=P(II)
CONTINUE

CALL GAMMACIM(CSJ,TSJ,ASJ)

IF (KK.LT.5) THEN

PRINT+,"C T A" ,KK," SEED ",DSEED,CS2,TSJ,ASJ
ENDIF ‘
IF ((ASJ .GT. 50) .OR. (ASJ .LT. .05)) GO TO 888
CALL MINDIS(ASJ,CSJ,TSJ,CKS,CCVK,CAD)
IF ((AS) .GT. 50) .OR. (ASJ .LT. .05)) GO TO 888

IF (KK.LT.S) THEN
PRINT#*,"min",CKS,CCVM,CAD
ENDIF

C1=CAD
S$33=0
IF ((ASJ .GT. 60) .OR. (ASJ .LT. .05)) GO TO 888
CALL CAMMACIM(CSJ,TSJ,ASJ)
I7 (KK.LT.5001) THEN
PRINT+,"C T A son" ,KK,XKK,CSJ,TSJ,AS]
ENOIF
IF ((ASJ .GT. 60) .OR. (ASJ .LT. .05)) GO TO 888

CALL GOF(CSJ,TSJj,ASJ,GOFS)
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999

99

100

86

/ ! 87

88

109

110
39

111

IF ((ASJ .GT. 50) .OR. (ASJ .LT. .05)) GO TO 888
AA(KK)=GOFS

CONTINUE
PRINT «, AA

OPEN(UNIT=7,FILE=’401E’ ,STATUS=’NEW’ ,I0STAT=M1,ERR=999)

WRITE(7,*)AA

CLOSE(UNIT=7,I0STAT=M2,ERR=999,STATUS=KEEP’)

CONTINUE
END

SUBROUTIKE GAMMACIM(CSJ,TSJ,ASJ)

COMMON/RAY/T(100)

COMMON/MANA/N,SS1,552,553,M,C1,T1,AL,MR

DOUBLE PRECISION T,C,THETA,ALPHA,DLT,DLC,CE,TH,EN,EM,ELNM,DLA,AL
DOUBLE PRECISION EMR,EI,D2T,DT,D2A,CA,D2C,DC,ENS,GAM,GMA,GAMI,GMAI
DOUBLE PRECISION GMAIZ2,DEXP,DABS,DLOG,SL,SR,S1

DOUBLE PRECISION EL,CSJ,TSJ,ASJ,C1,T1,AL

DIMENSION C(1100),THETA(1100),ALPHA(1100)

DIMENSION DLT(50),DLC(50),CE(50),TH(50),DLA(50),AL(50)

JI=20

JHi=20
C(1)=C1
THETA(1)=T1
ALPHA(1)=A1

EN=N

EM=M

ELNN=0.DO

EMR=MR

MRP=MR+1

NM=N-M+1

DO 88 I=NM,N

El=I
ELNM=ELNM+DLOG(EI)
IF(MR) 66,89,109
DO 110 I=1,MR
Els=]
ELNM=ELNM-DLOG(EI)
DO 63 J=1,1100

IF (J-1) 66,112,111
JIn)-1

IF (J-JI) 6,139,139
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139
117

118

135
119
120
121

136

122
123

124
140
141
137

125
126

142
138

IF (J3/JH-33/JH) 6,6,117

J2=]J-2

J3=]J-3

iF(ss1) 119,119,118
D2T=THETA(JJ)-2.DO+THETA(J2)+THETA(J3)
DT=THETA(JJ)-THETA(J2)

IF(D2T) 135,119,135

NT=DABS(DT/D2T)

GO TO 120

NT=999999

IF(SS2) 122,122,121
D2A=ALPHA(JJ)-2.DO*ALPHA(J2)+ALPHA(J3)
DA=ALPHA(JJ)-ALPHA(J2)

IF(D2A) 136,122,136

NA=DABS(DA/D2A)

GO TO 123

NA=999999

IF(SS3) 125,125,124

D2C=C(JJ)-2.D0*C(J2)+C(J3)
DC=C(JJ)-C(J2)
IF (€(J3)+0.00005-T(1))140,125,125

IF (€(J3J)-0.00005)125,125,141

IF (D2C)137,125,137
NC=DABS(DC/D2C)

GO TO 126

NC=999999

IF ((NT.LT.NC).AND.(NT.LT.NA)) THEN

MIN=NT
ELSEIF (NC.LT.NA) THEN
MIN=NC
ELSE
MIN=NA
ENDIF
NS=2+MIN

IF(NS)6,6,142
IF(NS-999999)138,6,6
ENS=NS

THETA(J)=THETA(JJ)+(DT+.25D0#* (ENS+1.D0) *D2T) *ENS

IF (THETA(J).GT.1.D-4) THEN
THETA(J)=THETA(J)
ELSE
THETA(J)=1.D-4
ENDIF
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130
133

134

73

74

101
102

103

IF ((ALPHA(JJ) .GT. 50) .OR. (ALPHA(JJ) .LT. .05)) GO TO 66
ALPHA(J)=ALPHA(JJ)
IF (SS3) 133,133,134
C(I=C(II)
GO TO 112
C(J)=C(JI)+(DC+. 25DO*(ENS+1 DO) *D2C) *ENS
IF (C(J).GT.0.D-4) THEN
C(JI)=C(J)
ELSE
€(J)=0.D-4
ENDIF
IF (C(J).LT.T(1)) THEN
C(J)=C(J)
ELSE
C(J)=T(1)
NDIF
IF ((1.DO- Eun)-c(J)-T(i))iiz 6,6
THETA(J)=THETA(JJ)
IF (SS1)13,13,7
S1=0.D0
DO 8 I=MRP,M
S1=S1+T(I)-C(JJ)
IF (N-M+MR)66,73,74
THETA(J)=S1/(EM*ALPHA(JJ))
GO TO 13
GMA=GAM(ALPHACJD))
KS=0

. DO 108 K=1,5000

W N s

KK=K~-1
GMAI=GAMI((T(M)-C(JJ))/TKETA(J) ,ALPHA(JJ))
GMAI2=GAMI((T(MRP)-C(JJ))/THETA(J),ALPHA(JJ))

DLT(K)=-EM*ALPHA(JJ) /THETA(J)+S1/THETA(J) %%2+

(EN-EM) *(T(M)~C(JJ))**ALPHA(JJ) *DEXP((C(JJ)
=T(M))/THETA(J))/(THETA(J)**(ALPHA(JJ)+1.D0)*(GMA-GMAI)) +EHR*ALPHA(JJ)
/THETA(J) -EMR#* (T(MRP)~C(JJ) ) **ALPHA (JJ)*DEXP ((C(JJ)-T(MRP))
/THETA(J))/(THETA(J) #*(ALPHA(JJ)+1.D0)*GMAI2)

TH(K)=THETA(J)

IF (DLT(K))101,13,102
KS=KS-1

IF (KS+K)105,103,105
KS=KS+1

IF (KS-K)105,104,108
THETA(J)=.6DO*TH(K)
GO TO 108
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104

105
106

107
108
13
14

16

16

21
30
76
77
32
38

78

39 .

41

42

70
71

72

43

THETA(J)=1.5D0*TH(K)

GO TO 108

IF (DLT(K)*DLT(KK))107,13,106

KK=KK-1

GO TO 105

THETA (J)=TH(K) +DLT(K) * (TH(K) -TH(KK) ) / (DLT(KK) -DLT(K))

- IF (DABS(THETA(J)-TH(K))-1.D-4)13,13,108

CONTINUE
ALPHA(J)=ALPHA(JJ)

IF (S52) 44,44,15

SL=0.D0

DO 16 I=MRP,M

SLeSL+DLOG(T(I1)-C(JJ))

KS=0

DO 43 K=1,50

KK=K-1

GMA=GAM(ALPHA(J))

IF (N-M+MR) 66,30,21
GMATI=GAMI((T(M)-C(JJ))/THETA(J) ,ALPHA(J))
GMAI2sGAMI ((T(MRP)-C(JJ))/THETA(J) ,ALPHA(J))
DG=DGAM(ALPHA(J))

IF (N-M+MR)66,77,32
DLA(K)=-EM*DLOG(THETA(J) ) +SL-EN*DG/GMA

GO TO 78
DGI=DGAMI((T(M)-C(JJ))/THETA(J) ,ALPHA(J))
DGI2=DGAMI((T(MRP)-C(JJ))/THETA(J) ,ALPHA(J))
DLA(K)=-EM*DLOG(THETA(J) ) +SL-EN*DG/GMA+ (EN-EM)*(DG-DGI)/
(GMA~GMAI)+EMR*DLOG(THETA(J) ) +EMR#DGI2/GMAI2
AL(K)=ALPHA(J)

IF (DLACK)) 39,44,40

KSrKS-1

IF (KS+X) 70,41,70

KS=KS+1

IF (KS-K) 70,42,70

ALPHA(J)= . 5D0O*AL(K)

GO TO 43

ALPHA(J)=1.6D0*AL(K)

GO TO 43

IF (DLA(K)*DLA(KK)) 72,44,71

KK=KK-1

GO TO 70
ALPHA(J)=AL(K)+DLA(K)* (AL (K)~AL(KK))/(DLA(KK)-DLA(K))
IF (DABS(ALPHA(J)-AL(K))-1.D-4) 44,44,43
CONTINUE

C(2)=C(JJ)
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86 -

45
143
79
46
83

69

80

81

82
51
90
91
52

B3

55

67
68
&6

57
112
113

114

W N e

I¥ (Ss3)112,112,45

IF (1.D0-ALPHA(J))79,143,143
IF (SS1+SS2)57,57,79

IF (N-M)66,83,46
GMA=GAM(ALPHA(J))

KS=0

DO 56 K=1,50
KK=K-1

SR=0.D0

DO 69 I=MRP,M

SRaSR+1.D0/(T(1)-C(J))

IF (N-M+MR)66,80,81

DLC(K)=(1.DO-ALPHA(J))*SR+EM/THETA(J)

GO TO 82

GMAI=GAMI((T(M)-C(J))/THETA(J),ALPHA(D))

GMAI2=GAMI ((T(MRP)-C(J))/THETA(J),ALPHA(J))
DLC(K)=(1.DO-ALPHA(J))*SR+(EM-EMR) /THETA(J)+
(ER-EM)*(T(M)-C(J))**(ALPHA(J)~1.D0)»
DEXP(~(T(M)-C(J))/THETA(J))/(THETA(J) **ALPHA(J)*
(GMA-GMAI))-EMR#+(T(MRP)-C(J))**(ALPHA(J)-1.D0)
*DEXP(-(T(MRP)-C(J))/TH ETA(J))/(THETA(J)*+=ALPHA(J)*GMAI2)

CE‘K)=C(J)

IF (DLC(K))90,112,91

KS=Ks-1

IF (KS+K)54,52,54

KS=KS+1 ‘

IF (Ks-K)54,53,54
C(J)=.5D0*CE(K)

GO TO 68
C(J)=CE(K)+.5D0*(T(1)-CE(K))

GO TO 68

IF (DLC(K)*DLC(KK))67,112,55
KK=KK-1

GO TO 54
C(J)=CE(K)+DLC(K)*(CE(K)-CE(KK) ) /(DLC(KK) -DLC(K))
IF (DABS(C(J)-CE(K))-1.D-4)112,112,56
CONTINUE

GO TO 112

C(J)=T(1)

IF (MR)66,113,58

DO 115 I=1,M

IF (C(J)+1.D-4-T(I))116,114,114
MR=MR+1
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116 C(1)=T(1)

116  IF (MR)6%,58,86
—— - 58 S1=0.D0
T SL=0.D0
DO 92 IsMRP,M
S1eS1+4T(I)-C(J)

92 SL=SL+DLOG(T(I)-C(J))
"GMA=GAM(ALPHA(J))
1IF(N-M+MR)66,98,96
96 GMAI=GAMI((T(M)-C(J))/THETA(J),ALPHA(J))
GMAI2=GAMI((T(MRP)-C(J))/THETA(J),ALPHA(J))
98 EL=ELNM-EM*DLOG (GMA) - EH‘ALPHA(J)*DLOG(THETA(J))*(ALPHA(J) 1.D0)#*SL
1-S1/THETA(J)
IF (N-M+MR)66,100,99
S , 99 EL=EL+ (EN-EM)* (DLOG(GMA-~GMAI) -DLOG(GMA))
o 1+EMR*ALPHA (J) *DLOG(THETA(J)) +EMR*DLOG(GMAI2)
R 100  TSJ=THETA(J)
7 . ASJ=ALPHA(J)

'CSI=C(J)

oy : IF (J-2)63,60,60

R 60 IF(DABS(C(J)-C(JJ))-1.D-4)61,61,63

o 61 IF(DABS(THETA(J) -THETA(JJ))~-1.D-4)62,62,63
Cor 62 IF(DABS(ALPHA(J)-ALPHA(JJ))-1.D-4)4,4,63

Coy T 63 CONTINUE

A 4  CONTINUE
S
» 66 RETURN
\ END

) DOUBLE PRECISION FUNCTION GAM(Y)
< DOUBLE PRECISION G,Z,DLOG,DEXP,Y
Z=Y
¢ G=0.D0
. 1 IF (2-9.00)2,2,3
2 G=G-DLOG(2)
Z=Z+1.D0
GO TO 1
3 GAM=G+(Z-.5D0)*DLOG(Z)-2+.5D0*DLOG(2.D0+3.1415926535689793D0) +1.D0/ (12.D0*Z,

S 1 -1.D0/(360.D0#Z#*3)+1.D0/(1260.D0%Z*#5)-1.D0/ (1680.D0*Z#*

TR s . »
P e s F et 2 : N
LA v s . . . .




2 7)+1.D0/(1188.D0*Z**3)-691.D0/(360360.D0#Z*»11)+1.D0/ (156 .DO*Z**13
3)

GAM=DEXP (GAM)

RETURN

END

c FUNCTION DGAM
DOUBLE PRECISION FUNCTION DGAM(Y)
DOUBLE PRECISION DG,Z,Y,DLOG,GAM
2=y :
DG=0.DO
1 IF (2-9.00)2,2,3
o 2 DG=DG-1.D0/Z
e 2%Z+1.D0
o GO TO 1
3 DGAM=DG+(Z~.5D0)/Z+DL0G(Z)-1.D0~1.D0/(12.D0#Z##2) +1,D0/ (120 . DO*Z**
4)-1.D0/(252.D0%Z*#6)+1.D0/ (240 .DO*Z**8)-1.D0/ (132.D0O*Z**10)
2 +691.D0/(32760.D0*Z**12)-1.D0/ (12.D0*Z**14)
- DGAM=DGAM*GAN(Y)
e RETURN
END

[

c FUNCTION DGAMI
DOUBLE PRECISION FUNCTION DGAMI(W,Z)
DOUBLE PRECISION U,V,W,Z,SU,ELL
DIMENSION U(50),V(50)
U(1)=W++Z+DLOG(W) /2
V(1) =W*xZ/Z%x2
SU=U(1)-V(1)
DO 1 L=2,50
LL=L-1
ELL=LL
U(L)=(-U(LL)*W/ELL)#*(Z+ELL-1.D0) /(Z+ELL)
x V(L)=-V(LL)*Wx(Z+ELL-1.D0)##2/ ( (Z+ELL) ##2+ELL)
T 1 SU=SU+U(L)-V(L)
S DGAMI=SU
e RETURN
END

o c FUNCTION GAMI
N DOUBLE PRECISION FUNCTION GAMI(W,Z)

! DOUBLE PRECISION U,W,Z,SU,ELL
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DO 10 I=1,N : |

DIMENSION U(50)
U(1)=WeeZ/2
Su=U(1)

DO 1 L=2,50
LL=L-1

ELL=LL
U(L)=(-U(LL) /ELL)*W*(Z+ELL-1.D0)/(Z+ELL)

SUsSU+U(L)

GAMI=SU

RETURN

END

SUBROUTINE MINDIS(ASJ,CSJ,TSJ,CKS,CCVM,CAD)

DOUBLE PRECISION ASJ),CSJ,TSJ,AHAT,THAT,CHAT,CKS,CCVM,CAD,X2
INTEGER ICKE,IKSi,ICV1i,IAD1

COMHON/MIN/IN )
COMMON/MIN1/XNCDF(£0) ,DIFKS,I,IKS,IKS1 i
COMMON/MIN2/DIFCVM,ICVM,ICV1
COMMON/MIN3/DIFAD,IAD,IAD1
COMMON/VALUE/P(100)

AHAT=ASJ ‘
CHAT=CSJ |
THAT=TSJ |

|

N=1N

XNCDF(1)=0.0 |
CONTINUE i
COMPUTE MINIMUM DISTANCE ESTIMATES FOR LOCATION |
DIFKS = 9999999.99 ' j

- DIFCVM= 9999999.99
. DIFAD = 9999999.99

IKS=0

ICVH = 0

IAD =0

X2 = P(1)-.0001
CHAT = X2

IKS1 = 0

ICVi = 0

IADL = O

DO 200 I = 1,200
X2 = X2 - .01

DO 160 Ls=1,¥
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ANORM=(P(L)~X2)/TSJ

IF ((ASJ .GT. 50) .OR. (ASJ .LT. .05)) GO TO 888

X1=ASJ

KNCDF (L) =GAMDF (ANORM, X1)

IF(XNCDF (L) .EQ.0.) THEN

XNCDF (L) =XNCDF (L) +.0001

NZERO=NZER0+1

- , END IF

2\«\\\ IF(XNCDF(L).EQ.1.) THEN
XNCDF (L) =XNCDF (L} -.0001

NONE=NONE+1

END IF

160 CONTINUE ‘
IF (IKS1 .EQ. 1) GO TO 182
CALL WKS(N)

182 CONTINUE
IF (ICvi .EQ. 1) GO TO 183
CALL WCVM(N)

183 CONTINUE
IF (TAD1 .EQ. 1) GG TO 198
CALL WAD(N)

198 CONTINUVE
ICKE = IKS1+ICV1i+IAD1

IF (ICKE .EQ. 3) GO TO 201
200 CONTINUE
201 CONTINUE

CKS = CHAT - 0. Oit(IKS-i)

CCVM = CHAT - 0.01#(ICVM-1)

CAD = CHAT - 0.01»(IAD-1)
888 RETURN

END
C »#*x WEIGHTED K-S =»#=

SUBROUTINE WKS(N)
) COMMON/MIN1/XNCDF(50) ,DIFKS,I,IKS,IKS1

' TOP = 0.0

BOT = 0.0
N =N
DO {O0L = 1,N
RL = L
IF(RL/XN-XNCDF(L) .GT. T"P) TOP = RL/XN - XNCDF(L)
IF/XNCDF(L)~-(RL-1)/XN .GT. BOT) BOT = XMCDF(L) - (RL-1)/XN

10 CONTINUE
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20

C *»»

10

20

C »»»

10

DIF = TOP

IF(BOT .GT. DIF) DIF = BOT
IF(DIF .LT. DIFKS) GO TO 20
IKS1 =

RETURN

IKS=I

DIFKS = DIF

RETURN

END

WEIGHTED C-V M #»»
SUBROUTIKE WCVM(N)

COMMON/MIN1/XNCDF(50) ,DIFKS,I,IKS,IKS1
COMMON/MIN2/DIFCVM,ICVM,ICV1

XN =N

DFCVM = 0.0

DO 10 M = 1,N

IN=N

DFCVM = DFCVM + (XNCDF(M) - (2.%XM - 1.) / (2.#XN))**2
CONTINUE ‘
DFCVM = DFCVM + 1./(12.#XN)

IF(DFCVM .LT. DIFCVM) GO TO 20

ICVL = 1

RETURN

DIFCVM = DFCVM

ICVM = 1

RETURN

END

ANDERSON-DARLING ##»*

SUBROUTINE WAD(N)
COMMON/MIN1/XNCDF(50) .DIFKS,I,IKS,IKS1
COMMON/MIN3/DIFAD,IAD,IAD1

DFAD = 0.0

DO 10K = 1,N

RK = K

JKk =N +1-K

IF(XNCDI(JK) .GE. 1.0) XNCDF(JK) = .999999999

DFAD = DFAD + (2.*RK-1.)*(LOG(XNCDF(K))+L0OG(1.-XNCDF(JK)))
CONTINUE

DFAD = ABS(-DFAD/N-N)
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333

888

IF(DFAD .LT. DIFAD) GO TO 20
IAD: = 1

RETURN

DIFAD = DFAD

IAD = I

RETURN

END

SUBROUTINE GOF(CSJ,T3J,ASJ,GOFS)
COMMON/RAY/T{100)
COMMON/MANA/N,SS1,552,553,M,C1,T1,A1,MR

REAL GAMCDF,CHISQ(101),COUNTS(100),CUTP(99),DF
REAL EXPECT(100), FREQ(1),P,RNGE(2),W(100)
DOUBLE PRECISION CSJ,TSJ,ASJ,T,C1,T1,AL
EXTERNAL GAMCDF

DATA FREQ/-1.0/,RNGE/0.0, 0.0/

DO 333 L=1,N
W(L)=(T(L)-CSJ) /TSI

CONTINUE |

IDU=0
NCAT=-N
RDFEST=3

IF ((ASJ .GT. 50) .OR. (ASJ .LT. .05)) GO TO 888

CALL CHIGF(IDO,GAMCDF,N,W,FREQ,NCAT,RNGE,NDFEST,CUTP,
COUNTS,EXPECT,CHISQ,P,DF) :

GOFS=CHISQ(N+1)

RETURN
END

REAL FUNCTION GAMCDF(X)
COMMON/SHAPE/ASJ
DOUBLE PRECISION ASJ
REAL X

GAMCDF=GAMDF (X,AS))
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Appendiz B. FORTRAN Code to Generate Criiical Values

DIMENSION AA(5000)

< PRINT =, ’ENTER THE FILE NAME’
c READ *, AS$

PRINT =, ’FOR SAMPLE SIZE , SHAPE 2.5’
PRINT »

PRINT *, ’THE CRITICAL VALUES ARE:’"

OPEN(UNIT=7,FILE=’501E’ ,STATUS=’0LD’ ,I0STAT=M1,ERR=999)

~ READ(7,%*)AA
CLOSE(UNIT=7,I0STAT=M2,ERR=999,STATUS="'KEEP’)

CALL SVRGN(5000,AA,AA)

PRINT 1, AA(4000)
PRINT =
PRINT 2, AA(4250)
PRINT »
PRINT 3, AA(4500)
PRINT *
PRINT 4, AA(4750)
PRINT »
PRINT 5, AA(4950)

\

i

1 %ORHAT(’ALPHA=.20: ! ,F6.3)
2 FORMAT(’ALPHA=.15: ’,F6.3)
3 ﬁORHAT(’ALPHA-.iO: ',F6.3)
4 FPRHAT(’ALPHA-.OS: ',F6.3)
] FORMAT(’ALPHA=.01: ',F6.3)
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Appendiz C. FORTRAN Code to Generate Rejection Percentages

DIMENSION AA(5000)

PRINT # ,’THE FOLLOWING ARE FOR N=40°’
PRINT = :

CRIT51=60.001
CRIT11=68.003
CRIT52=62.000
CRIT12=71.993

OPEN(UNIT=7,FILE='P40C1’ ,STATUS=’ * IOSTAT=M1,6ERR=9939)
READ(7,*)AA
CLOSE(UNIT=7,I10STAT=M2,ERR=999,STATUS='KEEP’)

PRINT »
PRINT #,’FOR ALTERNATE DISTRIBUTION:'

PRINT » .
PRINT »,’ GAMMA, SHAPE=1.5’

CALL POWER(AA,CRIT51,CRIT11,CRIT62,CRIT12)

OPEN(UNIT=7 ,FILE=’P4ON’ ,STATUS=’ *,I0STAT=M1,ERR=999)
READ(7,9)AA ,
CLOSE(UNIT=7,I0STAT=M2,ERR=999,STATUS=*KEEP’)

PRINT »
PRINT #,’FOR ALTERNATE DISTRIBUTION:'®

PRINT »
PRINT =,’ NORMAL’

CALL POWER(AA,CRITS1,CRIT11,CRIT52,CRIT12)

OPEN(UNIT»7,FILE='P40L’ ,STATUS=' ', I0STAT=Mi,ERR=999)
READ(7,%)AA
CLOSE(UNIT=7,10STAT=M2,ERR=999,STATUS="KEEP')

PRINT »
PRINT »,*FOR ALTERNATE DISTRIBUTION:'®
PRINT
PRINT »,’ LOGNORMAL'

46




B 2 S R e ST N

AT A AR . RO R T A i ISR o 5. o, et

e e R e i il

CALL POWER(AA,CRITS1,CRIT11,CRIT52,CRIT12)

PRINT =

PRINT »

PRINT »

PRINT », 'THE FOLLOWING ARE FOR N=50’

PRINT »

CRIT51=74.001
CRIT11=83.998
CRIT52=76.001
CRIT12=86.003

OPEN(UNIT=7,FILE=’P50G1’ ,STATUS=’ ', I0STAT=M1,ERR*999)
READ(7,%)AA :
CLOSE(UNIT=7,10STAT=M2,ERR=999,STATUS=*KEEP’)

‘ PRINT »
PRINT =,’FOR ALTERNATE DISTRIBUTION:®

PRINT »
PRINT #»,’ GAMMA, SHAPE=1.5’

CALL POWER(AA,CRITS1,CRIT11,CRIT52,CRIT12)

OPEN(UNIT=7,FILE=’P50N’ ,STATUS=’ °* , IOSTAT=M1i,ERR=99¢)

READ(7,#)AA
CLOSE(UNIT=7,10STAT=M2,ERR*999,STATUS=’KEEP’)

PRINT =
PRINT =, 'FOR ALTERNATE DISTRIBUTION:’

PRINT »
PRINT »,* NORMAL’

CALL POWER(AA,CRIT51,CRIT11,CRIT52,CRIT12)

OPEN(UNIT=7,FILE=’PSOL’ ,STATUS=’ *,I0OSTAT=M1,ERR=999)

READ(7,*)AA
CLOSE(UNIT=7,10STAT=M2,ERR*999,STATUS= KEEP’)

PRINT »
PRINT »,’FOR ALTERNATE DISTRIBUTION:®

PRINT
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100

200

PRINT =,’ LOGNORMAL®

CALL POWER(AA,CRIT51,CRIT11,CRITS2,CRIT12)

SUBROUTINE POWER(AA,CRITS51,CRIT11,CRIT62,CRIT12)

DIMENSION AA(5000)

ICNT11=0
ICNT51=0
ICNT12=0
ICNT52=0 °

DO 100 I=1,5000

IF (AACI) .GT. CRIT11)
IF (AA(I) .GT. CRITS1)
IF (AA(I) .GT. CRIT12)
IF (AACI) .GT. CRIT52)

CONTINUE

PWR11=ICNT11/5000.
PWR51=ICNT51/5000.
PWR12=ICNT12/5000.
PWR52=ICNT52/5000.

PRINT =
PRINT =»
PRINT 200, PWR11
PRINT »
PRINT 201, PWRS1
PRINT »*
PRINT 202, PWR12
PRINT =
PRINT 203, PWR52
PRINT =*

ICNT11=ICNT11+1
ICNTS1=ICNT51+41
ICNT12=ICNT12+1
ICNTE2=ICNTE2+1

PRINT *, ICNTi1, ICNTS5:, ICNT12, ICNT52

PRINT »*
PRINT =

FORMAT(’ POWER FOR ALPHA=.01, NULL HYPOTHESIS SHAPE 1.5 IS

' ,F5.3)
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201 FORMAT(’ POWER FOR ALPHA=,05. NULL HYPOTHESIS SHAPE 1.5 IS
& ’,F5.3)
202 FORMAT(® POWER FOR ALPHA=.01, NULL HYPOTHESIS SHAPE 2.5 IS
&t ’,F5.3)
203 FORMAT(’ POWER FOR ALPHA=.05, NULL HYPOTHESIS SHAPE 2.5 IS
& ',F5.3)
RETURN
END
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